表1 医薬品営業・マーケティングに関するデータマイニング

データマイ	ニング手法	概要
統計量	集計	項目別カウント,統計量(合計,平均,分散,最大,最小など)を求める。
	相関	相関係数/ 2値/F値を計算する。
	Feature Selection	目的変数に対して有効な説明変数を探す。
分類分析	Decision Tree	多分岐の回帰木,分類木を作成する。欠損値にも対応.ユーザ対話型。
	k-NN分析	k個の近傍データから回帰モデル , 判別モデルを作成する。
	Neural Network	階層型Networkを用いて回帰モデル , 判別モデルを作成する。
	Radial Basis Function Network	中間層のGauss関数を用いて,回帰モデル・判別モデルを作成する。
	Support Vector Machine	サポートベクターを用い,回帰モデル・判別モデルを作成する。
	予測	モデルの評価,適用を行う。
	ルールベース予測	学習データから抽出したルールを未知のデータに適用して予測を行う。
	モデル統合	複数モデル間の重みを最適化し、集団学習を行う。
	Naive Bayes	説明変数間の依存性を考慮した Naive Bayes で判別分析を行う。
	交差検証	異なるデータを用いて繰り返し学習し,最適なモデルを探し出す。
クラスタ分析	BIRCH	データを圧縮し,圧縮されたデータに対してK-Means法を行う。
	K-Means法	データを指定したk個のクラスタに分解する。
	OPTICS	データの密度を元にクラスタを抽出。特殊な形状のクラスタも抽出可能。
	自己組織化マップ(SOM)	Neural Network を用いてデータを2次元平面へマッピングする。
	ネットワーク階層化	ノードのリンク情報を用いて階層型クラスタリングをする。
	One-Class SVM	サポートベクターを用い,外れ値の検証を行う。
	階層型クラスタリング	階層型クラスタリングを行い、デンドログラムを描画する。
アソシエーション分析	アソシエーション分析	多階層間アソシエーションルール(「前提 = > 結論」)を抽出する。
	インタラクティブルール分析	アソシエーションルールの結論を指定し、前提を対話的に探索する。
	関連性ダイアグラム分析	指定したアイテム間の関連性を探索する。
	時系列アソシエション分析	時間的に順序のあるアソシエーションルールを探索する。
多変量解析	主成分分析	多変量データの持つ情報を、少数個の因子に要約する。
	因子分析	多変量データから潜在的な因子を求める。
	対応分析	カテゴリデータを数量化し、主成分分析する。
	Kernel 主成分分析	カーネル法を用いた主成分分析を行う。